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Abstract

Methods for estimating the parameter distributions necessary for modeling fluid flow and contaminant transport in the shallow

subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through

the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-

uniqueness commonly arise in such non-linear inverse problems making their solutions elusive. Incorporating additional types of

data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating

radar (GPR) methods have proven sensitive to subsurface fluid flow processes and appear promising for such applications. In the

present work, an inverse technique is presented which allows for the estimation of flow parameter distributions and the prediction of

flow phenomena using GPR and hydrological measurements collected during a transient flow experiment. Specifically, concepts

from the pilot point method were implemented in a maximum a posteriori (MAP) framework to allow for the generation of per-

meability distributions that are conditional to permeability point measurements, that maintain specified patterns of spatial corre-

lation, and that are consistent with geophysical and hydrological data. The current implementation of the approach allows for

additional flow parameters to be estimated concurrently if they are assumed uniform and uncorrelated with the permeability dis-

tribution. (The method itself allows for heterogeneity in these parameters to be considered, and it allows for parameters of the

petrophysical and semivariogram models to be estimated as well.) Through a synthetic example, performance of the method is

evaluated under various conditions, and some conclusions are made regarding the joint use of transient GPR and hydrological

measurements in estimating fluid flow parameters in the vadose zone.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Predicting flow phenomena, such as the time a spilled

contaminant takes to migrate through the vadose zone

and into an aquifer, or predicting soil moisture profiles

for agriculture management applications, requires char-
acterization of soil properties such as permeability,

porosity, and water retention. Existing techniques allow

point values of these parameters to be measured in situ or
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in the laboratory (using soil cores). However, fluid flow

parameters are commonly heterogeneous, and uncer-

tainty in their spatial distributions makes it difficult to

model fluid flow and contaminant transport using point

measurements alone. Furthermore, point measurements

are commonly limited due to their collection being
expensive, time consuming and invasive (creating the

potential for preferential flow paths). Alternative tech-

niques that allow for the inference of flow parameter

distributions are therefore in high demand.

Sequential simulation techniques may be used to

generate parameter fields that reflect specified patterns

of spatial correlation and preserve point measurements

[14,20,42,43]. However, the generation of fields that
accurately predict flow given hydrological data and

mail to: mbkowalsky@lbl.gov
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point measurements typically requires the employment

of inverse methods. While substantial progress has been

made in accounting for multi-dimensional spatial het-

erogeneity in the saturated zone, methods for the vadose

zone are less common and have been mostly limited to
one-dimensional cases, usually uniform or layered soil

columns [11,24,28,35,47,54]. In addition to the problems

of ill-posedness and non-uniqueness, endemic to all

types of groundwater inverse problems [7], the non-lin-

earity introduced through saturation-dependent flow

parameters undoubtedly contributes to the relative

shortage of inverse techniques for variably saturated

media [42,45].
As groundwater inverse problems can be made more

amenable to solution by incorporating additional types

of data [34], integrating geophysical measurements into

inverse methods for the vadose zone is a particularly

promising area of research, though still in its infancy

[4,25]. Proving increasingly useful for monitoring

moisture profiles in the vadose zone are geophysical

methods such as ground-penetrating radar (GPR)
[1,5,15,21,22,26,51] and electrical resistance tomography

(ERT) [53]. Applications are rare in which geophysical

methods are used quantitatively in the actual estimation

of flow parameters in the vadose zone. Some progress

has been made in this direction, such as in the work of

Binley et al. [4], who investigated the use of ERT and

crosshole GPR, collected during a tracer injection test,

to estimate by trial and error the effective value of sat-
urated hydraulic conductivity.

In the present work, we describe a method that allows

for estimation of flow parameter distributions in the

vadose zone jointly using hydrological and geophysical

measurements collected during a transient flow experi-

ment. We consider the special case in which permeability

is the only non-uniform flow parameter and its log value

may be treated as a space random function (SRF)
characterized by a lognormal distribution with known

patterns of spatial correlation (i.e., known semivario-

grams). Through a maximum a posteriori (MAP) inver-

sion framework that employs concepts from the pilot

point method, the log permeability distribution and addi-

tional flow parameters may be estimated. The employed

methodology allows for the generation of multiple para-

meter distributions that reproduce point measurements,
contain the specified patterns of spatial correlation, and

are consistent with the hydrological and geophysical

measurements. The resulting parameter distributions can

be used for hydrological modeling and also to calculate

parameter probability density functions (pdfs), which

provide a measure of parameter uncertainty.

While additional data types such as capillary pressure

and flow rate could easily be included in the method we
describe, the measurements considered in this study in-

clude only point values of permeability, profiles of water

saturation at boreholes (available through methods such
as neutron probe logging), and crosshole GPR data

(e.g., travel times or GPR-derived estimates of water

saturation, as is described below).

The requirements for modeling flow in variably sat-

urated media are described next, as are the GPR mea-
surements used in the current study. Following that is a

description of the proposed inversion methodology and

its implementation, and then a synthetic example which

allows for (1) evaluation of the method’s performance

under various conditions, (2) consideration of experi-

mental designs, and (3) conclusions to be drawn

regarding the joint use of GPR and hydrological mea-

surements for flow inversion.
2. Modeling flow in the vadose zone

Modeling flow phenomena in the vadose zone re-

quires a forward model that relates fluid flow parame-

ters, such as porosity and permeability, to observational

data, such as measurements of water saturation and
pressure. For the case of incompressible flow of water in

non-deformable porous media, variably saturated flow

can be modeled with the Richards’ equation, which is

given by

/
oSw
ot

þr KðSwÞ
qwg

rP cðSwÞ
�

� KðSwÞẑ
�
¼ 0; ð1Þ

where K and P c, both functions of water saturation Sw,
are the hydraulic conductivity and the capillary pres-

sure, respectively, qw is the water density, g is the
gravitational constant, / is the porosity, and ẑ is

the vertically oriented unit vector, positive upward [2].

The hydraulic conductivity is defined as

K ¼ k
krelðSwÞqwg

lw

; ð2Þ

where k is the permeability (or absolute permeability),

krel is the dimensionless relative permeability (the only

component of K that is a function of water saturation),

and lw is the dynamic viscosity of water.

Solving (1) and (2) additionally requires functions

that cast the relative permeability and capillary pressure

in terms of water saturation. A common parametric
formulation for this purpose is given by van Genuchten

[50] as:

krel ¼
ffiffiffi
S

p
1
h

� 1
�

� Sm�1
�mi2

; ð3Þ

P c ¼ �a�1 Sm�1
�

� 1
�1�m

; ð4Þ

S ¼ Sw � Sresw

Ssatw � Sresw

; ð5Þ

where krel and P c are the relative permeability and cap-
illary pressure functions, respectively, m (dimensionless)
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and a (e.g., in units of Pa�1) are soil-specific parameters,

S is the normalized water saturation, and Sresw and Ssatw

are the soil-specific residual and maximal water satura-

tion values, respectively. In the current work, the vari-

ably saturated flow simulator TOUGH2 [39] is used to
simulate transient flow experiments. Details of the flow

simulator are omitted here for brevity but are well

documented in Pruess [39].

Assuming that the relative permeability and capillary

pressure functions described above are valid, the spatial

distributions of the following variables must be char-

acterized in order to model flow in the vadose zone: k, /,
a, m, Sresw and Ssatw . While a number of studies show that
spatial variability of these parameters can be significant

[27,44], data relevant for modeling applications are

limited. In the present work, the only parameter con-

sidered spatially variable is k.
Observational data which may allow for estimation

of the parameters mentioned above include hydrological

data (e.g., measurements of water saturation) and geo-

physical data, such as from GPR methods (described
next).
3. Ground-penetrating radar measurements

Since GPR methods allow for the collection of non-

invasive high resolution data that are sensitive to fluid

saturation, they are potentially useful for parameter

estimation methods in the vadose zone. However, it

should be noted that GPR methods perform best in sites
lacking highly electrically conductive materials, such as

clay-rich soils [13]. GPR wave attributes such as the

electromagnetic (EM) wave velocity and attenuation are

governed by electrical parameters including the electrical

conductivity and the dielectric constant, both of which

depend on water saturation [12]. For common earth

materials [13], the EM wave velocity is related to the

dielectric constant through the simple relationship

v � cffiffiffi
j

p ; ð6Þ

where c is the EM wave velocity in free space and j is

the effective dielectric constant, which can be related to

water saturation with a petrophysical model [41,48]. The

model used by Roth et al. [41], also known as the CRIM

model, gives the effective dielectric constant as

j ¼ ð1½ � uÞ ffiffiffiffiffi
js

p þ Swu
ffiffiffiffiffiffi
jw

p þ ð1� SwÞu
ffiffiffiffiffi
ja

p 
2; ð7Þ

where js, jw, and ja are the dielectric constants for the
solid, water, and air components of the soil, respectively,

u is the soil porosity, and Sw is the water saturation. It

should be noted that potential measurement errors of

these parameters (particularly the component dielectric

constants) lead to significant uncertainty in estimated

effective dielectric constant values (or, as in an applica-
tion of this model that is described below, to uncertainty

in estimated water saturation values).

In crosshole GPR applications, high-frequency EM

pulses (commonly with central frequencies of 100 or 250

MHz) are propagated between boreholes in various
antenna configurations [12]. For multiple offset gather

(MOG) surveys, measurements are recorded at an array

of receiver positions for each of multiple transmitter

positions. MOG data sets allow for two- (or three-)

dimensional reconstruction of GPR wave attributes,

most commonly EM wave velocity or attenuation.

However, collecting such data sets can be time and labor

intensive, limitations particularly relevant in dynamic
flow situations. For the current study, we focus instead

on the configuration that is more quickly and easily

collected, the zero-offset profile (ZOP), in which only

measurements at successive depths are collected (i.e.,

while the antennas in their respective boreholes are kept

at equal depths). It is assumed that the water saturation

profile does not change significantly in the time it takes

to conduct a ZOP survey.
A GPR wave attribute that is potentially sensitive to

the distribution of water saturation is the arrival time.

For demonstration, a synthetic ZOP data set was gener-

ated for a model with spatially variable water saturation

(techniques for simulating GPR are discussed below).

The arrival times, picked at the point in time when the

waveform amplitude departs from zero, are indicated in

Fig. 1a and are also plotted in Fig. 1b. As an alternative to
using ZOP travel times directly as observational data for

flow inversion, they may also be converted to EM wave

velocity and then to average water saturation provided a

suitable petrophysical model exists. For example, the

combination of (6) and (7) gives the GPR-inferred aver-

age water saturation at a given depth as

Sw;GPR ¼ TcL�1 � ð1� uÞ ffiffiffiffiffi
js

p � u
ffiffiffiffiffi
ja

p

u
ffiffiffiffiffiffi
jw

p � ffiffiffiffiffi
ja

p� 	 ; ð8Þ

where T is the recorded travel time, and L is the sepa-

ration distance between boreholes. Through (8), the
travel times recorded in a ZOP survey (e.g., Fig. 1b) can

be converted to a depth profile of horizontally averaged

inter-borehole water saturation (Fig. 1c) provided that

soil porosity can be estimated.

The vertical resolution of ZOP profiles depends on

the electrical parameters of the soil and on the GPR

antenna frequency [12]. For a source frequency of 250

MHz, a resolution of �10 cm is typically achieved
(corresponding to the quarter wavelength of the prop-

agating wave traveling at 0.1 m/ns), whereas, a resolu-

tion closer to 25 cm is expected for a source frequency of

100 MHz. It should be noted that there is a tradeoff

between increases in resolution gained using higher

frequency antennas and the resulting decreases in signal

penetration [13,49].



Fig. 1. (a) Simulated GPR waveforms in ZOP configuration (one waveform simulated for each transmitting/receiving antenna depth) with picked

arrival times indicated by circles, (b) distribution of arrival times T with depth, and (c) estimates of inter-borehole water saturation derived from

arrival times T (using Eq. (8)), assuming that porosity and antenna separation distance are known.
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The application of GPR methods to groundwater

inverse problems requires a forward model that relates

soil properties, such as water saturation and porosity, to

observational data. Numerous techniques are available

for simulating GPR wave propagation, ranging from

ray based [6], to pseudo-spectral [8], to time domain fi-
nite difference methods [31]. Ideally, GPR data that may

be modeled include travel times (such as in Fig. 1b) or

water saturation profiles (such as in Fig. 1c) estimated

through application of (8). In the synthetic example

presented below, for simplicity we calculate average in-

ter-borehole water saturation values directly and use

these as ‘‘pseudo-GPR’’ measurements (i.e., the arith-

metic mean of the simulated water saturation values
between borehole antenna positions is taken with an

averaging thickness proportional to the GPR antenna

frequency). This approximation is justified by consid-

ering the high degree of similarity between water satu-

ration profiles obtained in this way and the water

saturation profiles inferred using a GPR time domain

finite difference method (shown below).
4. Methodology for parameter estimation

In developing an approach for estimating flow

parameter distributions using hydrological and geo-

physical measurements jointly, concepts from the pilot

point method [9,33] are implemented within a Bayesian,

maximum a posteriori (MAP) framework. Before

describing details of the inverse methodology employed

in the present work, some key concepts from the pilot
point method are first summarized.

4.1. Pilot point concepts

Application of pilot point methods commonly in-

volves the generation of a spatially correlated parameter

field, and subsequent perturbation of the field at select
locations, called pilot points, in order to allow for an

improved match between measured and simulated

observational data (e.g., piezometric head measure-

ments). The parameter field is perturbed in such a way

as to maintain known patterns of spatial correlation and

parameter point measurements (if available). The goal is
then to identify the optimal perturbation at each pilot

point location through inversion of observational data

using an appropriate optimization algorithm (i.e., the

goal is to modify the initial random field in such a way

as to allow for the best possible fit between measured

and simulated observational data). For a given initial

random field realization (i.e., with a fixed seed number),

a single parameter field is obtained through inversion.
Repeating this procedure for multiple random field

realizations (i.e., each with a different seed number)

yields multiple parameter fields, each of which is con-

ditional to point measurements, contains the specified

spatial correlation patterns, and is consistent with

observational data. Parameter pdfs may then be calcu-

lated, giving mean values and corresponding uncertainty

measures. Of perhaps even greater use are the obtained
parameter fields that may be used for hydrological

modeling (e.g., to predict flow phenomena and to

quantify prediction uncertainty).

Details in previous implementations of the pilot point

method differ greatly, including on how pilot point

locations are chosen, how perturbations are propagated,

which observational data are used, and details regarding

the weighting of parameters, observational data, and
prior information in the objective function (discussed

below). Some of the perceived benefit of early work on

the pilot point method derived from its flexibility in

choosing pilot point locations. Later innovative work

involved finding more systematic and efficient ap-

proaches for positioning pilot points. RamaRao et al.

[40] proposed a method for adding pilot points

sequentially, after finding their optimal locations with
adjoint sensitivity analyses. However, concerns were
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later raised regarding the addition of pilot points

sequentially [10]. In an alternate implementation given

by Gomez-Hernandez et al. [19], pilot points were

placed on a pseudo-regular grid (and called master

points), and inversion for their values was performed
simultaneously. They found optimal master point

spacing to be on the order of 2 to 3 points per correla-

tion length. (Note that although the method we describe

in the next section has similarities with the implemen-

tation of Gomez-Hernandez et al. [19], we will refer to

the unknowns as pilot points rather than master points.)

Much of the previous work employing pilot point

concepts involved horizontal flow in the saturated zone,
where the parameter of interest was the log transmis-

sivity, and observational data included steady state and

transient piezometric head measurements [9,19,32,40].

Wen et al. [52] extended the implementation developed

by Gomez-Hernandez et al. [19] to include transient

tracer data and found in a synthetic study that the

combination of piezometric head and tracer data al-

lowed for improvements in transport prediction.
Of interest in the present work is to apply a version of

the pilot point method to a vadose zone problem, and to

include geophysical, in additional to hydrological mea-

surements, as observational data. Such an approach is

desirable as it lacks restrictions common to other ap-

proaches which include linearizations of the flow equa-

tion and assumptions of stationarity of the dependent

variables (which is particularly problematic near
boundaries and is in fact quite restrictive in the vadose

zone) [53]. However, a potential limitation to pilot point

methods lies in the significant computational demands

arising for large problems (many forward calculations

are required to evaluate pilot point perturbations, and

multiple inversions must be performed for different

random field realizations). These concerns are less

restrictive with increasing computing speed and avail-
ability of parallel computing.

4.2. Pilot point concepts in MAP framework

For the present study we consider a domain in the

unsaturated zone that is undergoing transient flow and

is characterized by a spatially variable log permeability

Y ðxÞ, which is assumed to be a SRF with known pat-
terns of spatial correlation (e.g., the possibly anisotropic

semivariogram model is known from outcrop studies).

The remaining flow parameters are assumed to be spa-

tially uniform and uncorrelated with Y ðxÞ. The goal of
the inversion is to estimate Y ðxÞ and additional flow

parameters given:

1. Hydrological measurements, in this case assumed to be
local water saturation measurements, are defined as

zH ¼ Sw½ðx; tÞH 
 þ vH , taken over the intervals and

at measurement times ðx; tÞH ¼ ðxH ;i; tH ;1Þi¼1;...;MH
;

ðxH ;i; tH ;2Þi¼1;...;MH
; . . . ; ðxH ;i; tH ;NH Þi¼1;...;MH

, where the

MH measurement locations are xH , and the NH mea-

surement times are tH , and vH is the measurement

error (of length MH � NH ) associated with measure-

ment of zH ;
2. GPR measurements (presently the horizontally

averaged water saturation values inferred from ZOP

surveys), defined as zGPR ¼ Sw;GPR ðx

Tx; x



Rx;



tGPRÞ
 þ

vGPR, are taken over the intervals and at times

ðx

T x; x



R x; tG P RÞ ¼ ðxT x;i; xR x;i; tG PR;1Þi¼1;. . .;MG P R

; ðxT x;i;
xRx;i;tGPR;2Þi¼1;...;MGPR

; . . . ; ðxTx;i; xRx;i; tGPR;NGPR
Þi¼1;...;MGPR

,

where the MGPR transmitting and receiving antenna

positions are xTx and xRx, respectively, the NGPR mea-
surement times are tGPR, and vGPR is the measurement

error (of length MGPR � NGPR) associated with esti-

mates of Sw;GPR; and,
3. Log permeability point measurements Ymeas ¼

Y ðxmeasÞ, collected at the MY locations given by xmeas
and assumed to be error free and from a support scale

equal to or greater than that at which flow is mod-

eled.

In the synthetic example below, the hydrological and

GPR measurements are collected at the same times

making NH ¼ NGPR ¼ N , and tH ¼ tGPR ¼ t.

In the spirit of the pilot point method, Y ðxÞ is a

function of the MYpp pilot points Ypp at locations xYpp by

virtue of the fact that Y ðxÞ can be generated through

sequential simulation with specification of Ypp (along
with specification of Ymeas and the semivariogram

models cY ). When the log permeability is the only un-

known flow parameter considered, the vector of un-

knowns is defined as a ¼ Ypp. In the case where

additional flow parameters, such as the values (or log

values) of the spatially uniform soil parameters from

(3)–(5), then a ¼ ½Ypp; b
T, where b ¼ ½log a; logm;
Sresw ; Ssatw ; . . .
T. Parameters that could also be included in
b are the parameters of the petrophysical model used to

simulate GPR measurements or even parameters of the

semivariogram models. Furthermore, the parameters of

b could be considered as heterogeneous, i.e., the method

does not require them to be uniform in space. The

relationships between a and observational data can be

written as

z ¼ zH
zGPR

� �
¼ FH ða;YmeasÞ

FGPRða;YmeasÞ

� �
þ vH

vGPR

� �

¼ F ða;YmeasÞ þ v; ð9Þ

where z is a vector (of length MH � NH þMGPR � NGPR)
containing all observational data, FH is the forward

model (non-linear functional) that maps a and Ymeas to

the hydrological measurement domain zH , FGPR is the

forward model (non-linear functional) that maps a and

Ymeas to the GPR measurement domain zGPR, F are the

combined forward models mapping a and Ymeas to the



588 M.B. Kowalsky et al. / Advances in Water Resources 27 (2004) 583–599
measurement domains, and v are the measurement er-

rors for z. Recall that the electrical parameters used in

FGPR are a function of the saturation profile, which is

itself a function of a and Ymeas.

The goal of inversion now becomes the estimation of
a given z. This problem lends itself to the Bayesian, or

maximum a posteriori (MAP), framework [34], where

we may write the a posteriori probability density func-

tion (pdf) of a given z as

pajzðajzÞ ¼
pzjaðzjaÞpaðaÞ

pzðzÞ
¼ pv½z� F ðaÞ
paðaÞ

pzðzÞ
; ð10Þ

where pzja is the pdf of z given a, also referred to as the

likelihood function, pz is the pdf of z, pa is the prior pdf
of a, and pv is the pdf of v. The second equality in (10)

holds only for the case where a and v are independent.

Prior information traditionally refers to data that is
available from sources outside the site of interest, such

as measurements collected at nearby sites, or from soil

databases [46]. However, in the case of pilot points prior

information can also be obtained through interpolation

of in situ point measurements, as will be described

below.

If pa and pv are also assumed to be multi-normal with

covariance matrices Ca and Cv, respectively, then (10)
becomes the multi-normal maximum a posteriori for-

mulation given by

pajzðajzÞ ¼ cðzÞ exp
�
� 1

2
½z� F ðaÞ
TC�1

v ½z� F ðaÞ

�

� exp
�
� 1

2
½�a� a
TC�1

a ½�a� a

�
; ð11Þ

where �a is the prior mean of a, and cðzÞ is a normali-

zation factor that depends only on z [34]. We seek not a

single value for each parameter, but rather the entire

probability distribution for each parameter based on the

available measurements. Recall the Y ðxÞ is generated

using Ypp and Ymeas through sequential simulation with

random seed numbers. To obtain one realization of the
unknown parameters, a single inversion is performed

using one seed number. Each inversion consists of

minimization of the function given by �2 ln pajzðajzÞ with
respect to a. The objective function (OF) for this pur-

pose is given by the following:

OFðaÞ ¼ ½z� F ðaÞ
TC�1
v ½z� F ðaÞ
 þ ½�a� a
TC�1

a ½�a� a
:
ð12Þ

It is worth reiterating that the full MAP solution re-

quires pajzðajzÞ to be fully formed. Each parameter
realization obtained through the minimization of (12)

will contribute to pajzðajzÞ. The first term in (12) repre-

sents the mismatch between measured and simulated

observations, and the second term represents the mis-

match between the set of unknown parameters and their

prior estimates.
In order to show the separate contributions to the

objective function of the pilot points and the additional

flow parameters (and only for the case in which the off-

diagonals of Ca are zero) (12) can be written as

OFðaÞ ¼ ½z� F ðaÞ
TC�1
v ½z� F ðaÞ
 þ ½Ypp � Ypp
T

� C�1
Ypp
½Ypp � Ypp
 þ ½�b� b
TC�1

b ½�b� b
; ð13Þ

where Ypp and �b are the prior means of Ypp and b,

respectively, and CYpp and Cb are the corresponding
covariance matrices.

While (12) and (13) are of the form of the classic

weighted least squares estimator, the approach utilized

here is different since these objective functions are being

used to calculate of pajzðajzÞ for the special case of the

MAP estimator described above. It should also be said

that this framework has the flexibility to handle prior

pdfs other than that given in (11). In that case, however,
the latter terms in the objective functions of (12) and

(13) would take a new form [42], but the procedure

would remain unchanged.

Other pilot point implementations have resulted in

objective functions for which prior information was

commonly implemented through constrained minimi-

zation, essentially with an objective function containing

the first term of (13) [9,19,32]. The error covariance
matrix Cv was commonly replaced by some relative

weighting parameter––though zero measurement error

was often assumed. (Recently, the importance of accu-

rately accounting for measurement errors was stressed

[23].) McLaughlin and Townley [34] suggested that prior

information could be better used through an imple-

mentation similar to (13), which happens to be equiva-

lent in form to the MAP estimator we are considering.
In the current approach, values of Ypp are taken to be

the kriging estimates Ykrig, which are derived from point

measurements Ymeas [14]. In this way, the minimum

variance estimates of Ypp are obtained with uncertainties

quantified through the kriging variance r2
skðxÞ. Since the

diagonal elements of CYpp represent the expected vari-

ance of the pilot point parameters, it is then natural to

set them equal to the r2
skðxÞ estimates. We assume that

the off-diagonal elements of CYpp can be approximated as

zero (the validity of the assumption that measurement

errors are uncorrelated can be verified with the sensi-

tivity analysis procedure presented below). As the prior

values Ypp become less accurate (as r2
skðxÞ increases), less

weight is assigned to them in the objective function (i.e.,

the impact of the second term of (13) is lessened). When

there are no Ymeas available, the values of Ypp equal the
population mean, and the diagonal values of CYpp equal

the population variance.

Estimates of �b can represent measurements taken

with soil cores at the site of interest. Alternatively, if no

such measurements are available, average values may be

taken from nearby sites, or from soil parameter data-



Fig. 2. Synthetic example: ponded infiltration experiment. (a) Exper-

imental geometry and (b) the permeability distribution (unconditional

simulation) used in example. Boreholes are located at the horizontal

positions of 1 and 3 m. Permeability measurements are taken from

each borehole at 30 cm spacing (shown as black dots), water saturation

measurements are taken at the boreholes (at open squares), and the

pseudo-GPR measurements reflect horizontally averaged water satu-

ration values between the boreholes (between open squares). The

control planes used to test inversion performance are shown in (a) and

denoted by CP 1 and CP 2.
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bases. In either case, the variance values that populate

the covariance matrix Cb should represent the uncer-

tainty with which the values of �b are known.

4.3. Implementation details

We implemented the inversion procedure discussed

above in iTOUGH2 [17], a code that provides inverse

modeling capabilities to the TOUGH2 flow simulator

[39]. In general, inversion proceeds as follows:

1. Observational data (z) are collected in a field test (or

data are simulated for a synthetic study, as is done

presently), and their error distributions are quantified.

2. The set of pilot point parameters Ypp (and locations

xYpp ) are defined (2–3 pilot points per correlation

length are typically used).

3. An initial log permeability field Y 0ðxÞ is generated
with GSLIB [14] using a given seed number. This field

is then iteratively modified in steps 5–6.

4. Using the forward models FðaÞ, which allow for sim-

ulation of hydrological and GPR measurements,

observational data (zsim) are simulated and used to

calculate the initial value of the objective function

(13) for this realization.

5. The values of Ypp and b are perturbed via an optimi-
zation algorithm (described below), and a new field

Y ðxÞ (with the same seed number as that used to gen-

erate Y 0ðxÞ) is generated using the newly perturbed

values. The values of Ypp are treated as conditioning

points in the sequential simulation so that, in essence,

the perturbation of a pilot point value is propagated

throughout the region near that point, with the extent

of perturbation being related to the correlation
length.

6. Observational data (zsim) are simulated with the per-

turbed field obtained in (5) and used to calculate

the new value of the objective function. Steps 5–6

are repeated (until the objective function is mini-

mized). The final estimates of Ypp and b for this ran-

dom field realization are those with minimal

deviation from the prior values for which measured
and simulated observational data match best.

7. Steps 3–6 are then repeated for the desired number of

random field realizations (each with a different seed

number).

The estimated log permeability fields (and values of b)

may then be used for predictive hydrological modeling

and to generate the a posteriori pdfs of the flow
parameters.

In the present work we chose to use the Downhill

simplex optimization algorithm. While less efficient than

gradient-based methods (e.g., Levenberg–Marquardt),

the Downhill Simplex method was chosen since it is ro-

bust, its sensitivity to initial conditions is low, and it
requires no assumptions to be made regarding the shape

of the objective function, such as it being quadratic or

smooth [36,38].

For the synthetic example that follows, inversions

were performed for a number of different scenarios using
a numerical model with 1200 nodes. Performing 20

inversion realizations typically required 1–2 h of com-

putation time, though this depended on the various

parameters (e.g., amount of measurement noise, number

of data points) for each scenario. Calculations were

done on a PC with a 4-M CPU, 1.80 GHz clock speed,

and 512 MB RAM. Though the computational

requirements are substantial for this approach, the
parallel processing features of iTOUGH2 (not used for

obtaining the results presented here) make possible

large, 3-D problems of practical relevance.
5. Synthetic example: ponding experiment

A synthetic example involving a ponded infiltration

experiment in a two-dimensional vadose zone model (see

Fig. 2a) is presented next. The vertical and horizontal
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dimensions for the modeled domain are 3 and 4 m,

respectively, and the nodal spacing is 10 cm. The

parameters describing the relative permeability and

capillary pressure functions of the soil are spatially

uniform, as is the soil porosity. Although effects of
hysteresis on relative permeability can substantially

impact the redistribution of water following infiltration

[37], this is not considered in the present work for sim-

plicity. The only non-uniform flow parameter is the

permeability, and its log value is modeled as an SRF. In

particular, the log permeability field for this model (Fig.

2b) was generated using sequential Gaussian simulation

(SGSIM) [14] with a Gaussian anisotropic semivario-
gram (with variance of 0.5, nugget of 0.01, and effective

horizontal and vertical ranges equal to 1.5 and 0.75 m,

or integral scales of 0.77 and 0.38 m, respectively). See

Table 1 for a summary of the flow parameters used in

this example.

The boundary conditions are assumed to be known at

all times. While the saturation values are specified along

the upper boundary of the model (i.e., the ground sur-
face), their values change during the ponding experiment

(described next). The lower boundary of the model is

kept fully saturated representing the water table. And

the vertical sides of the model are treated as no-flow

boundaries.

In order to simulate a single ponded infiltration

experiment several steps are required. First, pre-ponding

conditions are obtained by simulating gravity-capillary
equilibrium; this is done by specifying the water satu-

ration value of 0.3 along the upper boundary of the

model (and full saturation along the lower boundary)

and then running the flow simulation until steady state is

reached. This profile, which is unique for each perme-
Table 1

Summary of parameters used to construct the (true) model in synthetic exam

Description

Flow modeling parameters (Eqs. (1) and (2))a

Relative permeability and capillary pressure functions (Eqs. (3)–(5))a

Gaussian semivariogram model for log permeabilityb

#

cY ðhÞ ¼ c0 þ c1½1� expð�h2=a2Þ


a Parameters defined in text.
b h is separation distance (m), c0 and c1 are nugget and variance, respective

by r ¼ a
ffiffiffi
3

p
, and I ¼ a

ffiffiffi
p

p
=2, respectively for the Gaussian semivariogram (f
ability distribution, is then used as the initial condition

for the transient simulation, which is initiated by fully

saturating the ponding region (see Fig. 2a). After a

simulated duration of ponding of 4 h, the surface is

again returned to pre-infiltration conditions (i.e., a sat-
uration value of 0.3 along the entire surface) and the

simulation continues for 8 h (making the total simulated

ponding time equal to 12 h). Simulated profiles of water

saturation are shown in Fig. 3a for several times.

Synthetic measurements were also obtained during

the simulated ponded infiltration experiment. (‘‘Syn-

thetic measurements’’ will subsequently be referred to

simply as measurements.) For this purpose, two bore-
holes that extend from the ground surface to the water

table were placed two meters apart (see Fig. 2a). As-

sumed available from in situ measurements or from

laboratory measurements on core samples [16], perme-

ability measurements were taken from each borehole in

30 cm intervals giving 20 point measurements in total

(i.e., MY ¼ 20). Each measurement support volume is

equal to that used in the flow modeling.
Borehole water saturation (BHSAT) values were also

recorded at 20 depths (up to �2 m deep with a 10 cm

interval) for 35 times in each borehole (i.e.,MH ¼ 40 and

N ¼ 35). These are assumed available through, for

example, neutron probe measurements [18]. Measure-

ment error was added to the BHSAT values from a

standard normal distribution (zero mean with standard

deviation equal to 0.01). In reality, the averaging volume
of neutron probe measurements depends on the soil

properties surrounding the borehole but this affect is not

accounted for here. Fig. 3b shows the BHSAT mea-

surements (before measurement noise is added) for

several times in the ponding experiment. Note that lar-
ple

Parameter values

lw ¼ 1:002� 10�3 Pa s

qw ¼ 1000 kg/m3,

u ¼ 0:3

m ¼ 0:4565,

a ¼ 4:037� 10�4 Pa�1

Sresw ¼ 0:15

Ssatw ¼ 1:0

Horizontal

c0 ¼ 0:01, c1 ¼ 0:5

a ¼ 0:866 m

r ¼ 1:5 m (I ¼ 0:77 m)

Vertical

c0 ¼ 0:01, c1 ¼ 0:5

a ¼ 0:433 m

r ¼ 0:75 m (I ¼ 0:38 m)

ly; the range and integral scale are measures of spatial persistence given

or the case where c0 is small).



Fig. 3. Simulated profiles of water saturation and the corresponding synthetic measurements (before measurement noise is added) for three separate

times during simulated infiltration test. The first column (a) shows the water saturation profiles for 2, 4, and 6 h after the onset of ponding,

respectively. Note that the upper portion of the model has begun to dry by 6 h since ponding was applied for only 4 h. The corresponding borehole

saturation measurements (BHSAT) for the left and right boreholes are shown in the second column (b). The third column (c) shows for each time a

comparison between the water saturation values derived from ZOP measurements simulated with a GPR time domain finite difference (FDTD) code

and those obtained by horizontally averaging the simulated water saturation values at each depth (i.e., the pseudo-GPR measurements).
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ger increases are observed at the right borehole than at

the left due to large scale heterogeneity in permeability

(Fig. 3b).

In addition, crosshole GPR (ZOP) measurements are

considered in the current example. As discussed earlier,
a water saturation profile derived from a ZOP data set

represents a depth profile of horizontally averaged inter-

borehole water saturation. In previous work, a proce-

dure was described for simulating GPR in variably

saturated media [29,30]. In that work, the procedure of

Bergmann et al. [3] was followed using an explicit

(staggered grid) finite difference time domain (FDTD)

algorithm (with 4th and 2nd order accurate approxi-
mations for the spatial and time derivatives, respec-

tively). Simulating 250 MHz ZOP surveys with this

procedure allows for travel times to be recorded and

vertical profiles of water saturation to be obtained using

(8) (Fig. 3c). However, similar vertical profiles of water

saturation were obtained by calculating the average

water saturation in the volume sampled by each GPR

antennae pair (also shown in Fig. 3c). This was done by
simply taking the arithmetic average of the simulated

water saturation values between the boreholes at each

measurement depth (with an averaging thickness equal

to 10 cm, roughly equal to the vertical resolution of

GPR for this frequency). This provided justification for

using ‘‘pseudo-GPR measurements’’ in the present

study. Namely, horizontally averaged water saturation

values are calculated within iTOUGH2 and used as a
proxy for simulated ZOP measurements (MGPR ¼ 20 and

N ¼ 35). Measurement error was also added to these

values (from a standard normal distribution with zero

mean and a standard deviation of 0.01).

It should be noted that for shallow measurements the
occurrence of refracted waves along the ground surface

can make it difficult to identify the direct wave arrival

times. For the sake of this synthetic study, we assume

that all the GPR measurements are deep enough to

allow for the arrival time of the direct waves to be

measured. In real world implementation, the region for

which meaningful data can be collected depends on

GPR antenna frequency and needs to be identified
through preliminary surveys.

5.1. Estimating log permeability using different measure-

ment types

At first the analysis is limited to the case in which the

log permeability is the only unknown flowparameter (i.e.,

minimization is performed using (13) with only the first

two terms). The benefits of various data sets (i.e., BHSAT,

pseudo-GPR, or a combination of both) can be evaluated
effectively by comparing models obtained through con-

ditional simulation and inversion with the same seed

number (Fig. 4). (Note that a different seed number was

used for generating the true model.) As expected, a con-

ditional simulation of the log permeability field (gener-

ated with only point measurements of permeability) does



Fig. 4. Log permeability models obtained (a) with conditional simulation, and through inversion using (b) only borehole saturation (BHSAT)

measurements, (c) only pseudo-GPR measurements; and (d) pseudo-GPR and BHSAT measurements. The permeability measurement locations

(Ymeas) used as conditioning points are shown with black dots, the observational data (z) locations are shown with squares, and the pilot point (Ypp)

locations are shown with open circles.
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not capture the main features of the true model (Fig. 2b)

except near the pointmeasurement locations (Fig. 4a). An

unsatisfactory model (with an anomalous low perme-

ability zone) is also obtained through inversion of

BHSAT measurements alone (Fig. 4b).

Including the easily collected GPR measurements in

inversion allows for improved models of log perme-
ability to be obtained. Inversion with only the pseudo-

GPR measurements results in a model (Fig. 4c) with

features that are similar to the true model but are not

placed in the correct lateral positions (e.g., the high

permeability zone in the upper half of the model). This

occurrence is explained by the fact that while ZOP

measurements reflect average values of water saturation

between boreholes, they are insensitive to lateral varia-
tions in water saturation (and thus in permeability). On

the other hand, the combined use of the pseudo-GPR

with additional local measurements (i.e., BHSAT mea-

surements) results in a model that appears quite similar

to the true model (Fig. 4d).

It should be noted that in each case shown in Fig. 4,

significant deviation from the true model is seen in

locations where no data were collected and no pilot
points were placed (outside the inter-borehole region

and toward the bottom of the model).

The observational data (z) available for inversion in

this example are depicted in Fig. 5. For the model

generated by conditional simulation (i.e., without

inversion), the mismatch between measured and simu-

lated observations is substantial (Fig. 5a). Whereas,

inversion of the pseudo-GPR and BHSAT measure-
ments (as performed to obtain the model in Fig. 4d)

allows for a good match between the measured and

simulated observations (Fig. 5b).

While the models discussed above are based on one

random field realization (i.e., one seed number), inver-

sions on 20 different realizations were performed in total,

giving estimates of the mean and standard deviation
surfaces (Fig. 6). Note that for the case of conditional

simulation, the high permeability zone seen in the inter-

borehole region of the true model is not predicted and

that away from the permeability measurements the

standard deviation values are high (Fig. 6a). The large

scale patterns of the true model are better reflected in the

mean surface for the models obtained using only pseudo-

GPR measurements (Fig. 6b), and for the models
obtained using both pseudo-GPR and BHSAT mea-

surements (Fig. 6c). To facilitate comparison, Fig. 7

shows a vertical slice of the true model with vertical slices

from the estimated mean fields (from Fig. 6). Note that

for both cases involving inversion (Fig. 7b–c), the mean

fields match well, at least for depths above )2 m. The

lowest prediction error results with the combined use of

pseudo-GPR and BHSAT measurements (Fig. 7b–c).
As discussed earlier, a benefit of the inversion meth-

odology lies in its ability to generate models with spec-

ified semivariograms. The true log permeability model

used in this example was taken as an unconditional

realization generated with the theoretical semivario-

grams shown in Fig. 8 (also see Table 1). While the mean

(horizontal and vertical) semivariograms for 20 uncon-

ditional realizations match the theoretical semivario-



Fig. 5. Comparison of measured observations (dots) and predicted/

simulated observations (lines) for permeability models obtained

through (a) conditional simulation, and (b) inversion. Observational

data (z) include borehole water saturation measurements (left and

middle columns), and water saturation inferred from pseudo-GPR

measurements (right column).

Fig. 6. Mean and standard deviation surfaces (left and right columns,

respectively) of 20 realizations for three cases: (a) conditional simula-

tions, (b) inversion using only pseudo-GPR, and (c) inversion using

BHSAT and pseudo-GPR.
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grams reasonably well, those for the true model vary

somewhat from the theoretical model (especially beyond

separation distances of 1 m, or 1.3 integral scales, in the

horizontal direction). However, inversion of pseudo-

GPR and BHSAT measurements gives models whose

mean semivariograms, in fact, match the true model
better (Fig. 8).
5.2. Predicting breakthrough curves

Ultimately, site characterization requires models that

allow for prediction of relevant fluid flow phenomena.

While there are many measures one could examine to

asses the performance of calibrated models, the phe-
nomenon of interest depends on the particular applica-

tion. We chose to evaluate the ability of the calibrated

models to predict the breakthrough of water caused by

the ponding experiment. Accordingly, the true break-

through curves (BTC) at several control planes (as de-
picted in Fig. 2a) are compared with predicted BTCs in

Fig. 9. (The BTC is defined as the time-varying total

flow rate across a control plane.) For this case, condi-

tional realizations fail to accurately predict break-

through (Fig. 9a). Performing inversion with BHSAT

measurements improves the prediction significantly by

allowing for better prediction of the initial breakthrough

times, though the absolute values remain inaccurate
(Fig. 9b). Dramatic improvements in prediction are

obtained through inversion with pseudo-GPR mea-

surements (using only pseudo-GPR or using the com-

bination of pseudo-GPR and BHSAT measurements)

(Fig. 9c and d). Predictions at the lower control plane

are for the most part more scattered than at the upper

control plane in part because the region sampled by the

hydrological and GPR measurements only reaches a
depth of about )2 m. The observational data are not

sensitive to modification of the permeability fields at or

below this depth.

Prediction of breakthrough over entire control planes

was equally good when GPR measurements were used

alone or together with BHSAT measurements. How-

ever, for reasons discussed above, it was found that the

combination of both GPR and BHSAT observations is
required in order to obtain accurate lateral variations in



Fig. 7. Vertical cross-section (at arbitrary horizontal position of 1.85 m) of true log permeability model (gray) and mean surfaces obtained from 20

inversion realizations (black lines) for (a) conditional simulation, (b) inversion using only pseudo-GPR, and (c) inversion using BHSAT and pseudo-

GPR. The estimation bounds (the mean surface +/)2 times the standard deviations) are shown with dotted lines.

Fig. 8. The horizontal (left) and vertical (right) log permeability

semivariograms for: the unconditional realization that is used as the

true model (dotted line); the mean of 20 unconditionally generated

fields (triangles); the mean of 20 fields obtained through inversion with

BHSAT and pseudo-GPR measurements (circles), and; the theoretical

model.
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the predicted BTCs (Fig. 10). Prediction over a support

volume smaller than what is measured with the ZOP

surveys requires more data and a better representation
of local conditions, that is, point measurements of sat-

uration at the boreholes in this case.
5.3. Considerations with an additional flow parameter

Previously, we assumed that the flow parameters of

the capillary pressure and relative permeability func-

tions were known (i.e., experimentally determined) and

error free. In this section, the following issues are con-

sidered: how sensitive are inversions to error in a mea-

sured (and assumed known) flow parameter (specifically,

a of Eq. (4)); and, can its value be estimated jointly with
the permeability distribution? In the previous sections,
the amount of data available for inversion was large and

rather idealized (observational data were collected at 36

times, making N ¼ 36, within 12 h). In this section, a

somewhat less ideal, but more practical scenario is

considered––observations at only 12 times (N ¼ 12)
within the same time frame are assumed available for

inversion. The two cases considered are briefly described

next before discussing the results:

Case 1: Estimating log k with error in a
Here we consider the possibility that the parameter a

has been measured inaccurately (or an incorrect value

has been assumed) and examine the impact that this

error has on inversion and subsequent BTC predictions.

Without acknowledging or accounting for this error,

inversions are performed as before: the permeability

distribution is estimated through inversion (with pseu-

do-GPR and BHSAT), and BTC predictions are made.
While a is assumed to be uniform, its ‘‘measured’’ (log)

value is given an error of 6%, and the remaining flow

parameter values remain error free (Tables 1 and 2). The

resulting capillary pressure function (4) used in the

forward model to simulate z is no longer correct (not

shown). Note that only a small amount of error is

considered so that we may evaluate if even a small

deviation from the true value affects the inversion results
significantly.

Case 2: Estimating loga together with log k
Until now, the log permeability was the only

parameter considered unknown and the value of a was
fixed during inversion. In this case, the permeability

distribution and the log value of a are estimated through
minimization of (13) with all three terms. Now, b ¼ ½a
,
and the prior value �b is taken as that which was exper-

imentally determined (e.g., from core measurements) or

taken from values measured at nearby sites, or from an

appropriate soil database. Estimates of the expected



Fig. 9. Breakthrough curves (total flow rates in g/s) at two control planes CP 1 and CP 2 (as depicted in Fig. 2a) for several cases: (a) conditional

simulation; (b) inversion with BHSAT; (c) inversion with only pseudo-GPR; and (d) inversion with pseudo-GPR and BHSAT. The true BTC is

shown in black, and predictions from 20 inversions (obtained using different seed numbers) are shown with gray lines.

Fig. 10. Lateral variations in BTCs predicted at upper control plane (CP 1) using models obtained through inversion with (a) pseudo-GPR alone,

and (b) pseudo-GPR and BHSAT. The flow rate in the left, middle and right sections from each control plane are shown in the left, middle, and right

columns, respectively. BTCs for the true model are shown with thick gray lines, while the predicted BTCs (mean from 20 inversions) are shown with

black lines, and the prediction bounds (the mean surface +/)2 times the standard deviations) are shown with dotted lines.
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variance for this parameter comprise the diagonal ma-

trix Cb. After performing inversions using the same
observational data as in the first case, multiple estimates

of a and the permeability field are obtained.

Assuming an inaccurate value of a for inversion (Case
1) is seen to affect BTC prediction dramatically––the

predicted mean is inaccurate and the uncertainty bounds
are large (Fig. 11a). When, on the other hand, a was

estimated together with the log permeability (Case 2),
the corresponding mean BTC shows an improved pre-

diction with decreased uncertainty bounds (Fig. 11b).

Similar conclusions are drawn in terms of parameter

estimation and uncertainty, as depicted in Fig. 12. These

results suggest that a prudent way to account for



Table 2

Assigned/estimated parameters for various scenarios involving a


log a rz N

Assigned Estimated (% error) Standard deviation

True model )3.394 – – – –

Error in a
(Figs. 11a and 12a)

)3.600 – – 0.01 12

Estimation of log a
(Figs. 11b, 12b, and 13a)

– )3.406 (0.37) 0.034 0.01 12

Decreased N
(Fig. 13a)

– )3.401 (0.23) 0.039 0.01 6

Increased rz

(Fig. 13b)

– )3.41 (0.49) 0.030 0.10 12

Decreased N ,
Increased rz (Fig. 13b)

– )3.367 (0.80) 0.037 0.10 6

*Units of log a are log (Pa�1), remaining parameters are dimensionless. rz is the standard deviation of the (zero mean) noise added to the obser-

vational measurements z. For each case, MY ¼ 20, MGPR ¼ 20, MH ¼ 40.

Fig. 12. Horizontal cross-section (at depth of )1.25 m) of true log

permeability model (gray) and mean surfaces obtained from 20 real-

izations (black lines) for (a) inversion using incorrect a and (b) inver-

sions in which both log permeability and a are estimated. The

estimation bounds (the mean surface +/)2 times the estimated stan-

dard deviations) are shown with dotted lines. Note that the condi-

tioning data points are at horizontal positions of 1 and 3 m. See

Table 2.

Fig. 11. Considerations with flow parameter a. Inversions for perme-
ability were performed with a slightly inaccurate value of a to give the

BTC (at CP 2) shown in (a). The BTC shown in (b) is predicted when

values of log a are estimated jointly with the permeability distribution.

For each case, the true BTC is shown with a thick gray line, and the

predicted BTC (mean of 20 realizations) is shown with a black line,

and the prediction bounds (the mean surface +/)2 times the standard
deviations) are shown with dotted lines.
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uncertainty in measured (or assumed) values of a, or
other flow parameters, is through their estimation to-
gether with the log permeability distribution.

5.4. Sensitivity to sampling frequency and measurement

error

The sensitivity of inversion results to temporal sam-

pling and measurement error was also examined. With a

decrease in the number of times at which observational

data were collected (from N ¼ 12 to 6) within the 12 h

experiment, a slight increase in deviation from the true

BTC was observed, though the initial breakthrough time
was still close to that for the true model (Fig. 13a).

However, when the standard deviation of the measure-

ment error is increased by a factor of 10 (from rz ¼ 0:01
to 0.1), reducing the number of observational data has a

more substantial effect (Fig. 13b). In fact, the prediction

bounds for the cases with increased measurement error
fail to envelop the true BTC. The impact of increased

measurement error and decreased number of observa-

tional data on estimation of the flow parameter a is
minor (Table 2).
5.5. Experimental design considerations

In designing the present experiment, considerations

should include identification of optimal ponding con-

ditions (e.g., lateral placement and duration of the
ponding source) and measurement strategies (e.g., data

types, locations, and temporal sampling strategies).

Alternate design scenarios can be investigated without

needing to perform flow inversions through sensitivity

analyses [34]. For non-linear problems that are

approximately linear near the solution (and for data



Fig. 14. Estimated variance for the pilot points located along the

center line of the model (at a horizontal position of 2 m in Fig. 2).

Estimates were obtained by extracting diagonal terms from the Ca

matrix, calculated through Equation (14) in iTOUGH2, for various

cases of observational data: (a) all time (12 observations between 0 and

12 h after ponding); (b) early time (8 observations between 0 and 5.5

h); (c) late time (4 observations between 6.8 and 12 h), and; (d) only

steady state data (one observation before onset of ponding).

Fig. 13. BTC predictions at CP 2 for models obtained through inversion with decreasing temporal sampling interval (i.e., decreasing N ) and
increasing measurement errors (rz). Two cases of measurement error were considered: (a) rz ¼ 0.01 and (b) rz ¼ 0:10. For both cases, the true BTC

is shown with a thick gray line, and the predicted BTCs for N ¼ 12 and 6 are shown with solid and open circles, respectively. The bounds (the mean

surface +/)2 times the estimated standard deviations) for these respective cases are shown with thin solid lines and dotted lines. Also see Table 2.
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with normally distributed measurement errors), the

parameter covariance matrix is estimated through

Ca ¼ JTC�1
v J

� 	�1
; ð14Þ

where the sensitivity coefficient Jij, a measure of the

sensitivity of the observational data zi to changes in

parameters aj, is given by

Jij ¼
ozi
oaj

; ð15Þ

which is calculated numerically using the perturbation

method. It follows that resulting estimates of parameter

variance r2
a (contained in the diagonal terms of Ca) are

inversely proportional to the size of the sensitivity

coefficients. Competing experimental designs can be
evaluated before collecting data by estimating parameter

variance in this way for a hypothetical model.

This method was used to investigate the sensitivity of

parameter uncertainty to time periods for which obser-

vational data are collected. Estimated uncertainty in the

pilot point parameters is depicted in Fig. 14 for various

cases. The lowest parameter uncertainties are achieved

by using all data points, and similarly low values are
achieved using only early-time data. However, parame-

ter uncertainty is increased considerably when only late-

time data were used. From these observations it can be

concluded that the sharp fronts of water saturation seen

in the early time data (Fig. 5) are more sensitive to the

parameters than are the gradual variations seen in the

late time data. Also note the high degree of uncertainty

that results with inversion of only (pre-ponding) steady
state data points.

The duration of ponding was also investigated. While

increasing ponding time from 1 h initially decreased the

expected parameter uncertainty, only modest decreases

in uncertainty were gained by extending the ponding

duration beyond 4 h (not shown). In addition, the ex-
pected parameter uncertainty varied with lateral place-
ment of the ponding source on the surface, with the

lowest overall value resulting from placement in the

center of the model (also not shown).
6. Summary and conclusions

A method that allows transient hydrological and

geophysical measurements to be used for estimating

permeability distributions and other flow parameters in

the vadose zone was described. The MAP method
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provided a framework within which concepts from the

pilot point method could be incorporated. Application

of a pilot point procedure allows for the generation of

multiple parameter distributions that reproduce point

measurements, contain the specified patterns of spatial
correlation, and are consistent with measured hydro-

logical and geophysical data. The obtained parameter

distributions can be used for hydrological modeling. A

posteriori parameter pdfs are also obtained and allow

for quantification of parameter uncertainty.

A synthetic example indicated that inversion with

different data types, including transient hydrological and

GPR measurements, allows for good prediction of flow
phenomena. While GPR measurements offer the benefit

of non-intrusively monitoring changes in water satura-

tion over large distances, measurements collected in the

ZOP configuration are insensitive to lateral variations in

flow. To predict BTCs with accurate lateral variations,

the joint use of ZOP measurements with additional local

measurements (BHSAT) was necessary. In any case,

prediction of breakthrough was poorest in regions
without pilot points or observational data.

While slight error in a measured parameter of the

capillary pressure function (a) caused a decrease in

accuracy (and increase in uncertainty) in estimation of

the permeability field and subsequent flow prediction, it

was found that error in the measured log value of a
could be accommodated if this parameter was allowed

to vary during inversion (i.e., if it is jointly estimated
with log permeability). Also, the sensitivity of results to

increasing error in observational data and decreasing

number of observational data was investigated.

A method for evaluating experimental designs was

used to help identify optimal ponding conditions and

temporal sampling strategies without needing to per-

form flow inversions. Observations of particular rele-

vance were that transient data decrease estimation
uncertainty compared to steady state data, and that

early-time data are seen to decrease estimation uncer-

tainty more than late-time data.

A limitation of the current implementation, but not in

the approach itself, lies in the assumption that the log

permeability is the only non-uniform parameter since in

reality additional flow parameters are commonly non-

uniform and possibly correlated with each other. The
sensitivity of the model predictions to variations in the

flow parameters other than the permeability should be

considered. Additionally, it was assumed that spatial

correlation patterns of log permeability are known,

though this is not always the case. An improved

implementation of the approach, which could be done

relatively easily, would include estimation of the semi-

variogram parameters. In this case, a semivariogram
model would be chosen (e.g., Gaussian or Exponential),

and as its parameters (e.g., range and variance) were

perturbed through sequential simulation, the weight of
the prior values would change depending on the per-

turbed semivariogram model. Also, we have thus far

assumed that pre-infiltration conditions are at steady

state, which in reality is not always the case, and we have

assumed that the boundary conditions are known.
Evaluating the impact of uncertainty in boundary con-

ditions and initial conditions on model prediction is also

left for future research.

Future investigations will be performed using a more

sophisticated forward model of GPR that allows for the

simulation of travel times within iTOUGH2 using

arbitrary antennae configurations in 3-D models.
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